

Gas Hydrate Dissociation/Generation in the Marine Environment

(Naval Research Laboratory Accelerated Research Initiative)

- Principal Investigator: J. Gettrust⁺
- Co-Investigators:
 - W. Wood+
 - R. Coffin*
 - K. Grabowski*
 - P. Vogt⁺
 - J. Yesinowski*
 - R. Lamontagne*
 - S. Rose-Pehrsson*

Thrust of NRL's Hydrates Accelerated Research Initiative (ARI)

- Study Dissociation/Creation of Natural Gas Hydrates and Develop Predictive Models for Impact of this on Properties of Marine Sediments.
 - Use High-Resolution, Deep-Tow MCS to Establish Geologic Framework Through Hydrate Stability Zone.
 - Integrate NRL's capabilities in Physics and Chemistry to Quantify Age-Relationships, Processes.
 - Quantify Biogeochemical Interactions Between Hydrates & Sediments
 - Use NMR techniques to identify & image methane gas hydrates in sediment core samples.
 - Development of *In Situ* Methane Sensors.
 - Use Isotopic Analysis of Sediments/Hydrates to Study Hydrate Formation History.

⁺ Ocean & Atmospheric Science & Technology Directorate, NRL

^{*} Materials Science & Component Technology Directorate, NRL

Deep-Tow Multichannel Seismic

- Developed to study detailed geoacoustic properties to full ocean depths.
- Uses Helmholtz Resonator source to provide stable, repeatable seismic source over full depth range (0 6000 m).
- Deep-tow geometry increases resolution within upper 1 km+ of sediments.

Quantification of Micro-Structure, Ages, & Geochemistry to Constrain Models of Processes

- In-Situ Sensing of Natural Gas Hydrates.
 - Adapt and/or develop instruments with increased sensitivity and sample rate
- NMR to identify, image, and study hydrates.
 - Non-destructive, non-invasive, sensitive, quantitative tool to identify & image methane gas hydrates in sediment core samples to study structural composition and nonstoichiometry.
- Isotope Analysis to Determine Age and Origin of Hydrates and Sediment.
 - Use Transmission Electron Accelerator Mass Spectrometer (TEAMS) Consider isotopes such as 40 Ar/ 39 Ar , 10 Be , 26 Al , 14 C, and δ^{18} O .
- Biogeochemistry roles in the creation of gas hydrates.
 - Differentiate between biogenic & thermogenic sources
 - Benthic communities interaction with gas hydrates

Summary, NRL Gas Hydrates Accelerated Research Initiative

- This is a focused study to quantify gas hydrate dissociation/creation processes & rates.
- It is predicated on NRL's unique high-resolution, deep-tow MCS capabilities to resolve geologic framework.
- Exploits the broad range of expertise available within NRL to quantify micro-scale processes.
- Predict Geotechnical and Geoacoustic properties within regions where gas hydrates are found.
- The ARI is designed to be collaborative with entire hydrates research community.

Coupling Between Proposed DOE Program and NRL ongoing Research/ARI

- NRL
 - Geoacoustic Properties
 - Dissociation (flux)
 - Sediment stability for bottom mounted systems
 - Numerical Simulation

- DOE
 - Resource Characterization
 - Safety & Seafloor Stability
 - Safety & Seafloor Stability
 - Production, global carbon cycle

NRL Contributions to the DOE Hydrates Program

- Collaborative NRL/USGS/DOE Studies with Emphasis on the Gulf of Mexico.
 - Multi-Disciplinary Investigation of Sediment Stability & Mass Wasting.
 - Conventional and Deep-Tow MCS
 - Direct Sampling (Geochemistry, in situ Methane Sensing)
 - Remote Sensing (EM, Heatflow, Fluid Flux)
 - Laboratory Investigation of Fine-Scale Structures (NMR, Mass Spec)
 - Develop Remote Sensing Techniques to Quantify
 Concentration & Distribution of gas Hydrates.